廊坊自助建站模板视频广告网站

张小明 2026/1/12 15:15:17
廊坊自助建站模板,视频广告网站,慕课网站开发文档,seo研究中心学员案例一、项目介绍 本项目旨在开发一个基于YOLOv12目标检测模型的犬种自动识别系统。系统能够实时地检测图像或视频中的犬只#xff0c;并精准地识别出其所属的6种特定犬种#xff0c;包括比格犬、斗牛犬、柯基犬、金毛寻回犬、哈士奇和博美犬。YOLOv12作为YOLO系列的最新迭代并精准地识别出其所属的6种特定犬种包括比格犬、斗牛犬、柯基犬、金毛寻回犬、哈士奇和博美犬。YOLOv12作为YOLO系列的最新迭代以其卓越的检测速度与精度为本系统提供了强大的技术基础使其非常适合于宠物管理、智能安防、宠物丢失寻找以及图像内容自动化标注等实际应用场景。目录一、项目介绍二、项目功能展示2.1 用户登录系统2.2 检测功能2.3 检测结果显示2.4 参数配置2.5 其他功能3. 技术特点4. 系统流程三、数据集介绍数据集配置文件四、项目环境配置创建虚拟环境安装所需要库五、模型训练训练代码训练结果六、核心代码登录注册验证 多重检测模式️ 沉浸式可视化⚙️ 参数配置系统✨ UI美学设计 智能工作流七、项目源码(视频简介)基于深度学习YOLOv12的犬种识别检测系统YOLOv12YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv12的犬种识别检测系统YOLOv12YOLO数据集UI界面登录注册界面Python项目源码模型二、项目功能展示✅ 用户登录注册支持密码检测和安全性验证。✅ 三种检测模式基于YOLOv12模型支持图片、视频和实时摄像头三种检测精准识别目标。✅ 双画面对比同屏显示原始画面与检测结果。✅ 数据可视化实时表格展示检测目标的类别、置信度及坐标。✅智能参数调节提供置信度滑块动态优化检测精度适应不同场景需求。✅科幻风交互界面深色主题搭配动态光效减少视觉疲劳提升操作体验。✅多线程高性能架构独立检测线程保障流畅运行实时状态提示响应迅速无卡顿。2.1 用户登录系统提供用户登录和注册功能用户名和密码验证账户信息本地存储(accounts.json)密码长度至少6位的安全要求2.2 检测功能图片检测支持JPG/JPEG/PNG/BMP格式图片的火焰烟雾检测视频检测支持MP4/AVI/MOV格式视频的逐帧检测摄像头检测实时摄像头流检测(默认摄像头0)检测结果保存到results目录2.3 检测结果显示显示原始图像和检测结果图像检测结果表格展示包含检测到的类别置信度分数物体位置坐标(x,y)、2.4 参数配置模型选择置信度阈值调节(0-1.0)IoU(交并比)阈值调节(0-1.0)实时同步滑块和数值输入框2.5 其他功能检测结果保存功能视频检测时自动保存结果视频状态栏显示系统状态和最后更新时间无边框窗口设计可拖动和调整大小3. 技术特点采用多线程处理检测任务避免界面卡顿精美的UI设计具有科技感的视觉效果发光边框和按钮悬停和按下状态效果自定义滑块、表格和下拉框样式检测结果保存机制响应式布局适应不同窗口大小4. 系统流程用户登录/注册选择检测模式(图片/视频/摄像头)调整检测参数(可选)开始检测并查看结果可选择保存检测结果停止检测或切换其他模式三、数据集介绍本项目的模型训练与评估基于一个精心构建的犬种图像数据集。该数据集涵盖了目标6种犬种的大量真实世界图像确保了模型的泛化能力和鲁棒性。类别定义 (nc: 6)数据集共包含6个犬种类别其名称names分别为Beagle(比格犬)bullDog(斗牛犬)corgi(柯基犬)goldenRetriever(金毛寻回犬)husky(哈士奇)pomeranian(博美犬)数据规模与划分数据集被划分为三个独立的部分以遵循标准的机器学习工作流程确保模型评估的公正性与准确性。训练集 (Training Set): 共880张图像。该子集用于直接训练YOLOv12模型使其学习并拟合不同犬种的特征如外形、毛色、体型、面部特征等。验证集 (Validation Set): 共251张图像。在训练过程中验证集用于周期性地评估模型在未见数据上的表现辅助进行超参数调优和监控模型是否过拟合。测试集 (Test Set): 共126张图像。测试集在整个训练流程完成后用于对模型的最终性能进行无偏评估。该子集模拟了模型在真实应用环境中遇到新数据时的表现其评估指标如mAP, Precision, Recall是衡量模型优劣的核心标准。数据集配置文件数据集采用标准化YOLO格式组织train: F:\犬种检测数据集\train\images val: F:\犬种检测数据集\valid\images test: F:\犬种检测数据集\test\images nc: 6 names: [Beagle, bullDog, corgi, goldenRetriever, husky, pomeranian]四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov12 python3.9激活虚拟环境conda activate yolov12安装cpu版本pytorchpip install torch torchvision torchaudio安装所需要库pip install -r requirements.txtpycharm中配置anaconda五、模型训练训练代码from ultralytics import YOLO model_path yolo12s.pt data_path data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs100, batch8, device0, workers0, projectruns, nameexp, )根据实际情况更换模型 # yolov12n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 # yolov12s.yaml (small)小模型适合实时任务。 # yolov12m.yaml (medium)中等大小模型兼顾速度和精度。 # yolov12b.yaml (base)基本版模型适合大部分应用场景。 # yolov12l.yaml (large)大型模型适合对精度要求高的任务。--batch 8每批次8张图像。--epochs 100训练100轮。--datasets/data.yaml数据集配置文件。--weights yolov12s.pt初始化模型权重yolov12s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLO from UiMain import UiMainWindow import time import os from PyQt5.QtWidgets import QDialog from LoginWindow import LoginWindow class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLO(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...)登录注册验证对应文件LoginWindow.py# 账户验证核心逻辑 def handle_login(self): username self.username_input.text().strip() password self.password_input.text().strip() if not username or not password: QMessageBox.warning(self, 警告, 用户名和密码不能为空) return if username in self.accounts and self.accounts[username] password: self.accept() # 验证通过 else: QMessageBox.warning(self, 错误, 用户名或密码错误) # 密码强度检查注册时 def handle_register(self): if len(password) 6: # 密码长度≥6位 QMessageBox.warning(self, 警告, 密码长度至少为6位)多重检测模式对应文件main.py图片检测def detect_image(self): file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.start() # 启动检测线程视频检测def detect_video(self): file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.video_writer cv2.VideoWriter() # 初始化视频写入器 self.detection_thread DetectionThread(self.model, file_path, conf, iou)实时摄像头def detect_camera(self): self.detection_thread DetectionThread(self.model, 0, conf, iou) # 摄像头设备号0 self.detection_thread.start()️沉浸式可视化对应文件UiMain.py双画面显示def display_image(self, label, image): q_img QImage(image.data, w, h, bytes_per_line, QImage.Format_RGB888) pixmap QPixmap.fromImage(q_img) label.setPixmap(pixmap.scaled(label.size(), Qt.KeepAspectRatio)) # 自适应缩放结果表格def add_detection_result(self, class_name, confidence, x, y): self.results_table.insertRow(row) items [ QTableWidgetItem(class_name), # 类别列 QTableWidgetItem(f{confidence:.2f}), # 置信度 QTableWidgetItem(f{x:.1f}), # X坐标 QTableWidgetItem(f{y:.1f}) # Y坐标 ]⚙️参数配置系统对应文件UiMain.py双阈值联动控制# 置信度阈值同步 def update_confidence(self, value): confidence value / 100.0 self.confidence_spinbox.setValue(confidence) # 滑块→数值框 self.confidence_label.setText(f置信度阈值: {confidence:.2f}) # IoU阈值同步 def update_iou(self, value): iou value / 100.0 self.iou_spinbox.setValue(iou)✨UI美学设计对应文件UiMain.py科幻风格按钮def create_button(self, text, color): return f QPushButton {{ border: 1px solid {color}; color: {color}; border-radius: 6px; }} QPushButton:hover {{ background-color: {self.lighten_color(color, 10)}; box-shadow: 0 0 10px {color}; # 悬停发光效果 }} 动态状态栏def update_status(self, message): self.status_bar.showMessage( f状态: {message} | 最后更新: {time.strftime(%H:%M:%S)} # 实时时间戳 )智能工作流对应文件main.py线程管理class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 信号量通信 def run(self): while self.running: # 多线程检测循环 results self.model(frame, confself.conf, iouself.iou) self.frame_received.emit(original_frame, result_frame, detections)七、项目源码(视频简介)演示与介绍视频基于深度学习YOLOv12的犬种识别检测系统YOLOv12YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv12的犬种识别检测系统YOLOv12YOLO数据集UI界面登录注册界面Python项目源码模型
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

自学网站建设看哪本书wordpress主题emlog

8个降AI率工具,专科生必备! AI降重工具,专科生论文的救星 在当前高校论文写作中,越来越多的学生开始使用AI工具辅助撰写内容。然而,随着学术规范日益严格,**AIGC率**、**AI痕迹**以及**查重率**成为了论文能…

张小明 2025/12/26 14:31:37 网站建设

做h5哪些网站好 知乎做网站的升级人

一步成图革命:OpenAI Consistency Model如何重塑2025图像生成效率 【免费下载链接】diffusers-ct_bedroom256 项目地址: https://ai.gitcode.com/hf_mirrors/openai/diffusers-ct_bedroom256 在AI图像生成领域,"质量"与"速度&quo…

张小明 2026/1/8 0:26:03 网站建设

域名绑定网站提示正在建设推广网站的公司

DiskInfo下载官网替代方案:高效获取YOLO资源 在工业视觉系统部署现场,你是否曾经历过这样的场景?产线调试进入关键阶段,工程师准备加载最新的 YOLOv8 模型进行缺陷检测测试,却发现 yolov8n.pt 文件从 GitHub 下载速度…

张小明 2025/12/26 13:54:07 网站建设

南宁网站建设流程成全视频免费观看在线看小说下载

CubiFS分布式文件系统:从入门到核心贡献者完全指南 【免费下载链接】cubefs CubiFS 是一个开源的分布式文件系统,用于数据存储和管理,支持多种数据存储模型和云原生环境。 * 分布式文件系统、数据存储和管理 * 有什么特点:支持多种…

张小明 2026/1/7 16:54:41 网站建设

电子商务网站建设需求分析报告网页翻译怎么设置

Windows下PaddleOCR GPU版环境搭建全指南 在当前人工智能技术快速渗透各行各业的背景下,光学字符识别(OCR)已不再是实验室里的概念,而是实实在在落地于发票查验、档案数字化、工业质检等关键业务流程中的核心工具。面对中文文本复…

张小明 2026/1/1 2:23:42 网站建设

国外手机网站欣赏工业设计专业怎么样

EmotiVoice多语言支持现状与未来规划 在虚拟偶像直播中突然切换情绪,或让游戏角色因剧情转折而声音颤抖——这些曾经依赖大量录音和人工设计的语音表现,如今正被一种新型语音合成技术悄然实现。EmotiVoice,这个开源社区中迅速崛起的名字&…

张小明 2025/12/27 5:03:02 网站建设