做游戏交易网站如何把网站放在主机上

张小明 2026/1/12 9:32:32
做游戏交易网站,如何把网站放在主机上,分类目录网站怎么做,网站模板下载网站一、项目介绍 木材缺陷检测是木材加工和质量控制中的关键环节#xff0c;传统人工检测方法效率低且易受主观因素影响。本文基于深度学习技术#xff0c;提出一种基于YOLOv11的木材缺陷检测系统#xff0c;能够高效识别裂纹#xff08;Crack#xff09;、死节#xff08;…一、项目介绍木材缺陷检测是木材加工和质量控制中的关键环节传统人工检测方法效率低且易受主观因素影响。本文基于深度学习技术提出一种基于YOLOv11的木材缺陷检测系统能够高效识别裂纹Crack、死节Dead Knot和活节Live Knot三类常见缺陷。系统采用包含2,259张训练图像、173张验证图像和174张测试图像的自定义YOLO数据集进行模型训练并结合用户友好的UI界面及登录注册功能。实验结果表明该系统在测试集上表现出较高的检测精度和鲁棒性为木材工业的智能化质检提供了可行解决方案。引言木材作为重要的天然材料广泛应用于建筑、家具制造等领域但其内部或表面的缺陷如裂纹、死节和活节会显著降低材料强度和经济价值。传统缺陷检测依赖人工目视或简单机械测量存在效率低、一致性差等问题。近年来基于深度学习的目标检测技术如YOLO系列模型在工业缺陷检测中展现出巨大潜力。然而针对木材缺陷的专用检测系统仍面临数据集稀缺、模型泛化能力不足等挑战。为此本研究开发了一套基于YOLOv11的木材缺陷检测系统通过构建包含2,606张标注图像的数据集涵盖三类典型缺陷优化模型训练流程并设计交互式UI界面以提升用户体验。系统不仅实现了高精度缺陷识别还通过登录注册机制保障数据安全与管理便捷性。本文详细介绍了数据集的构建、模型训练方法及系统实现为木材行业的自动化质检提供了技术参考和实践案例。目录一、项目介绍二、项目功能展示2.1 用户登录系统2.2 检测功能2.3 检测结果显示2.4 参数配置2.5 其他功能3. 技术特点4. 系统流程三、数据集介绍数据集配置文件四、项目环境配置创建虚拟环境安装所需要库五、模型训练训练代码训练结果六、核心代码登录注册验证 多重检测模式️ 沉浸式可视化⚙️ 参数配置系统✨ UI美学设计 智能工作流七、项目源码视频简介基于深度学习YOLOv11的木材缺陷检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv11的木材缺陷检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型二、项目功能展示✅ 用户登录注册支持密码检测和安全性验证。✅ 三种检测模式基于YOLOv11模型支持图片、视频和实时摄像头三种检测精准识别目标。✅ 双画面对比同屏显示原始画面与检测结果。✅ 数据可视化实时表格展示检测目标的类别、置信度及坐标。✅智能参数调节提供置信度滑块动态优化检测精度适应不同场景需求。✅科幻风交互界面深色主题搭配动态光效减少视觉疲劳提升操作体验。✅多线程高性能架构独立检测线程保障流畅运行实时状态提示响应迅速无卡顿。2.1 用户登录系统提供用户登录和注册功能用户名和密码验证账户信息本地存储(accounts.json)密码长度至少6位的安全要求2.2 检测功能图片检测支持JPG/JPEG/PNG/BMP格式图片的火焰烟雾检测视频检测支持MP4/AVI/MOV格式视频的逐帧检测摄像头检测实时摄像头流检测(默认摄像头0)检测结果保存到results目录2.3 检测结果显示显示原始图像和检测结果图像检测结果表格展示包含检测到的类别置信度分数物体位置坐标(x,y)、2.4 参数配置模型选择置信度阈值调节(0-1.0)IoU(交并比)阈值调节(0-1.0)实时同步滑块和数值输入框2.5 其他功能检测结果保存功能视频检测时自动保存结果视频状态栏显示系统状态和最后更新时间无边框窗口设计可拖动和调整大小3. 技术特点采用多线程处理检测任务避免界面卡顿精美的UI设计具有科技感的视觉效果发光边框和按钮悬停和按下状态效果自定义滑块、表格和下拉框样式检测结果保存机制响应式布局适应不同窗口大小4. 系统流程用户登录/注册选择检测模式(图片/视频/摄像头)调整检测参数(可选)开始检测并查看结果可选择保存检测结果停止检测或切换其他模式三、数据集介绍本研究所使用的木材缺陷检测数据集采用YOLO格式标注包含Crack裂纹、Dead Knot死节、Live Knot活节三类常见木材缺陷。数据集共2,606张图像按照8:1:1的比例划分为训练集、验证集和测试集具体分布如下数据集图像数量占比用途训练集2,25986.7%模型训练验证集1736.6%超参数调优测试集1746.7%最终性能评估数据集配置文件数据集采用标准化YOLO格式组织train: F:\木材缺陷检测数据集\train\images val: F:\木材缺陷检测数据集\valid\images test: F:\木材缺陷检测数据集\test\images nc: 3 names: [Crack, Dead Knot, Live Knot]四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov11 python3.9激活虚拟环境conda activate yolov11安装cpu版本pytorchpip install torch torchvision torchaudio安装所需要库pip install -r requirements.txtpycharm中配置anaconda五、模型训练训练代码from ultralytics import YOLO model_path yolo11s.pt data_path data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs100, batch8, device0, workers0, projectruns, nameexp, )根据实际情况更换模型 # yolov11n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 # yolov11s.yaml (small)小模型适合实时任务。 # yolov11m.yaml (medium)中等大小模型兼顾速度和精度。 # yolov11b.yaml (base)基本版模型适合大部分应用场景。 # yolov11l.yaml (large)大型模型适合对精度要求高的任务。--batch 8每批次8张图像。--epochs 100训练100轮。--datasets/data.yaml数据集配置文件。--weights yolov11s.pt初始化模型权重yolov11s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLO from UiMain import UiMainWindow import time import os from PyQt5.QtWidgets import QDialog from LoginWindow import LoginWindow class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLO(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...)登录注册验证对应文件LoginWindow.py# 账户验证核心逻辑 def handle_login(self): username self.username_input.text().strip() password self.password_input.text().strip() if not username or not password: QMessageBox.warning(self, 警告, 用户名和密码不能为空) return if username in self.accounts and self.accounts[username] password: self.accept() # 验证通过 else: QMessageBox.warning(self, 错误, 用户名或密码错误) # 密码强度检查注册时 def handle_register(self): if len(password) 6: # 密码长度≥6位 QMessageBox.warning(self, 警告, 密码长度至少为6位)多重检测模式对应文件main.py图片检测def detect_image(self): file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.start() # 启动检测线程视频检测def detect_video(self): file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.video_writer cv2.VideoWriter() # 初始化视频写入器 self.detection_thread DetectionThread(self.model, file_path, conf, iou)实时摄像头def detect_camera(self): self.detection_thread DetectionThread(self.model, 0, conf, iou) # 摄像头设备号0 self.detection_thread.start()️沉浸式可视化对应文件UiMain.py双画面显示def display_image(self, label, image): q_img QImage(image.data, w, h, bytes_per_line, QImage.Format_RGB888) pixmap QPixmap.fromImage(q_img) label.setPixmap(pixmap.scaled(label.size(), Qt.KeepAspectRatio)) # 自适应缩放结果表格def add_detection_result(self, class_name, confidence, x, y): self.results_table.insertRow(row) items [ QTableWidgetItem(class_name), # 类别列 QTableWidgetItem(f{confidence:.2f}), # 置信度 QTableWidgetItem(f{x:.1f}), # X坐标 QTableWidgetItem(f{y:.1f}) # Y坐标 ]⚙️参数配置系统对应文件UiMain.py双阈值联动控制# 置信度阈值同步 def update_confidence(self, value): confidence value / 100.0 self.confidence_spinbox.setValue(confidence) # 滑块→数值框 self.confidence_label.setText(f置信度阈值: {confidence:.2f}) # IoU阈值同步 def update_iou(self, value): iou value / 100.0 self.iou_spinbox.setValue(iou)✨UI美学设计对应文件UiMain.py科幻风格按钮def create_button(self, text, color): return f QPushButton {{ border: 1px solid {color}; color: {color}; border-radius: 6px; }} QPushButton:hover {{ background-color: {self.lighten_color(color, 10)}; box-shadow: 0 0 10px {color}; # 悬停发光效果 }} 动态状态栏def update_status(self, message): self.status_bar.showMessage( f状态: {message} | 最后更新: {time.strftime(%H:%M:%S)} # 实时时间戳 )智能工作流对应文件main.py线程管理class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 信号量通信 def run(self): while self.running: # 多线程检测循环 results self.model(frame, confself.conf, iouself.iou) self.frame_received.emit(original_frame, result_frame, detections)七、项目源码视频简介基于深度学习YOLOv11的木材缺陷检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv11的木材缺陷检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

河津做网站wordpress主题网

UE默认显示Maya PS在图层最上面添加两个调整图层 ,OpenColorIO变换使用来转换色彩空间 , 曲线使用来微调在绘制过程中关闭调整图层, 保存是打开

张小明 2026/1/3 23:52:33 网站建设

大良营销网站公司快手直播间挂人气自助网站

符号表与索引生成器详解 1. 引言 在许多flex或bison程序中,符号表起着至关重要的作用,它用于跟踪输入中使用的名称。下面我们将从一个简单的索引生成程序开始,逐步深入探讨如何利用符号表来实现不同功能,最后还会介绍一个较为实用的C语言交叉引用程序。 2. 索引生成器 …

张小明 2026/1/3 23:52:31 网站建设

手机网站制作费用多少福田欧曼

10亿参数双突破:Janus-Pro-1B如何用视觉解耦技术重塑多模态格局 【免费下载链接】Janus-Pro-1B Janus-Pro-1B:打造下一代统一多模态模型,突破传统框架局限,实现视觉编码解耦,提升理解与生成能力。基于DeepSeek-LLM&…

张小明 2026/1/3 23:52:29 网站建设

网站建设公司自贡济源建设企业网站公司

Ubuntu下Conda配置YOLOv5全指南 在智能视觉应用日益普及的今天,实时目标检测已成为智能制造、安防监控和自动驾驶等领域的核心技术。而 YOLOv5 凭借其出色的精度与速度平衡,已经成为工业级部署的首选方案之一。然而,对于初学者而言&#xff…

张小明 2026/1/3 23:52:27 网站建设

龙江网站设计制作做seo网站图片怎么优化

在Kubernetes中,Namespace(ns)、Pod、Service和ConfigMap(cm)是四种重要的资源对象,它们之间存在着紧密的关系。下面我将详细解释它们之间的关系以及它们是如何协同工作的。1. 基本概念Namespace&#xff0…

张小明 2026/1/4 1:17:57 网站建设

找个为公司做网站的王烨凡

第一章:多模态RAG与智能语音系统的演进随着人工智能技术的不断突破,多模态检索增强生成(Multi-modal RAG)与智能语音系统正经历深刻变革。传统RAG主要依赖文本输入与输出,而现代系统已能融合图像、音频、视频等多种模态…

张小明 2026/1/4 1:17:53 网站建设